P.S.JpexamがGoogle Driveで共有している無料の2025 Oracle 1z0-1127-24ダンプ:https://drive.google.com/open?id=1YattME8WoK4wlMdIPr3Pg5wrcFb2HO-g
現在、どの領域にでも勉強して努力する必要があります。IT業界でも同じです。Oracleに関する仕事をしている人たちはさまざまな認証試験に参加して自分の知識を補充し、よく働く必要があります。1z0-1127-24試験に合格するのはあなたの能力を証明して、質素を高めることができます。
トピック | 出題範囲 |
---|---|
トピック 1 |
|
トピック 2 |
|
トピック 3 |
|
私たちの1z0-1127-24学習教材は、学習目標を達成するための時間とエネルギーを節約できます。 お客様に高品質な1z0-1127-24学習教材を提供でき、私たちは非常に光栄と感じます。また、1z0-1127-24学習教材の詳しい紹介を読むことができ、私たちは喜んでいます。お客様は1z0-1127-24学習教材のより良い理解を可能にするために私たちは最善を尽くします。
質問 # 56
Which is a key advantage of usingT-Few over Vanilla fine-tuning in the OCI Generative AI service?
正解:D
質問 # 57
Which is a characteristic of T-Few fine-tuning for Large Language Models (LLMs)?
正解:D
解説:
T-Few (Task-Specific Fine-tuning with Few-Shot Learning) is a fine-tuning approach designed to efficiently adapt Large Language Models (LLMs) to new tasks with minimal training data while using a small subset of model weights.
Characteristics of T-Few Fine-Tuning:
Selective Weight Updating: It does not update all model weights but focuses on a small fraction.
Few-Shot Learning Efficiency: Reduces the amount of labeled data required for fine-tuning.
Computational Cost Reduction: Requires significantly less compute than full model fine-tuning.
Better Transferability: Preserves the general knowledge of the base model while adapting to specific tasks.
Why Other Options Are Incorrect:
(B) is incorrect because T-Few updates weights rather than restructuring the model.
(C) is incorrect because not all weights are updated-only a small fraction.
(D) is incorrect because T-Few is optimized for efficiency and does not significantly increase training time.
🔹 Oracle Generative AI Reference:
Oracle AI supports efficient fine-tuning techniques like T-Few and LoRA (Low-Rank Adaptation) to enhance task-specific performance while reducing computational overhead.
質問 # 58
ow do Dot Product and Cosine Distance differ in their application to comparing text embeddings in natural language?
正解:D
質問 # 59
Which is the main characteristic of greedy decoding in the context of language model word prediction?
正解:C
解説:
Greedy decoding in the context of language model word prediction refers to a decoding strategy where, at each step, the model selects the word with the highest probability (the most likely word). This approach is simple and straightforward but can sometimes lead to less diverse or creative outputs because it always opts for the most likely option without considering alternative sequences that might result in better overall sentences.
Reference
Research papers on decoding strategies in language models
Technical documentation on language model inference methods
質問 # 60
What distinguishes the Cohere Embed v3 model from its predecessor in the OCI Generative AI service?
正解:C
解説:
The Cohere Embed v3 model distinguishes itself from its predecessor in the OCI Generative AI service primarily through improved retrievals for Retrieval Augmented Generation (RAG) systems. This enhancement means that the new version of the model is better at retrieving relevant documents or passages that can be used to augment the generation of responses. The improvements likely include better embedding quality, which allows the model to find more relevant and contextually appropriate information during the retrieval phase.
Reference
Cohere model documentation and release notes
Technical discussions on improvements in RAG systems
質問 # 61
......
あなたにOracleの1z0-1127-24試験に合格できるのは我々の努力への最大の認可です。この目標を達成するために、我々はOracleの1z0-1127-24試験の資料を改善し続けてあなたに安心に利用させます。我々の商品とサービスに疑問があったら、我々Jpexamのウェブ・サイトで問い合わせたり、メールで我々と連絡したりすることができます。あなたの購入してから、Oracleの1z0-1127-24試験ソフトが更新されたら、我々はメールであなたを通知します。
1z0-1127-24過去問: https://www.jpexam.com/1z0-1127-24_exam.html
ちなみに、Jpexam 1z0-1127-24の一部をクラウドストレージからダウンロードできます:https://drive.google.com/open?id=1YattME8WoK4wlMdIPr3Pg5wrcFb2HO-g